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Abstract

The theory of higher weights is applied to binary self-dual codes. Bounds are
given for the second minimum higher weight and a Gleason type theorem is derived
for the second higher weight enumerator. The second weight enumerator is shown
to be unique for the putative [72,36,16] Type II code and the first three minimum
weights are computed for optimal codes of length less than 32. We also determine the
structures of the graded rings associated with the code polynomials of higher weights
for small genera, one of which has the property that it is not Cohen-Macaulay.

Key Words: Binary Self-Dual Codes, Higher Weights.

1 Introduction

A binary code of length n is a subset of FJ' and a code is linear if it is a subspace. To
this ambient space we attach the standard inner product: [v,w] = Y v;w;, and for a code
C define C+ = {v € F} | [v,w] =0 Yw € C}. As usual, if C C C* we say that C' is
self-orthogonal, and if C' = C* then C is self-dual. For a complete description of the theory
of self-dual codes and any undefined terms see [8].

We shall describe the notion of higher weights, introduced by Wei [12], which is a gen-
eralization of Hamming weight. We shall follow the notation in [11], see this paper for a
complete description of higher weights. Let D C F3 be a linear subspace, then

(1) | D] = |Supp(D)],
where
(2) Supp(D) = {i | Jv € D, v, # 0}.

For a linear code C define
(3) d, = d.(C) = min{||D|| | D € C, dim(D) = r}.

Notice that the minimum Hamming weight of a code C'is d;(C'). It also follows that d; < d;
when ¢ < j and that dj, = |supp(C')| where k is the dimension of the code. In fact, it can be
shown (Proposition 3.1 in [11]), that d; < d; when i < j. For a self-dual code dj, = n since
the all one vector is always present.

The higher weight spectrum is defined as

(4) Aj = Aj(C) = {D € C | dim(D) =r, [|D]| = i}|.
This naturally allows us to define the higher weight enumerators
(5) W (Ciy) = W"(C) = > Ajy'.
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Hence for each r < dim(C) we have a weight enumerator. Note that W*!(C;y) is not the
Hamming weight enumerator Ho(y) = > a;y" where there are ; vectors of Hamming weight
i in C, but rather W'(C;y) = Hc(y) — 1, since the zero vector is not represented.

This weight enumerator can also be written as a homogeneous polynomial:

W(Ciayy) = Y @Byl

DCC
dim D=r

i Al (C)a"™
i=0

It is immediate that if C' is a code with dimension k over Fy then W7"(C;1) = [ g ] :
T

(2P —1)(2k—2)...(2F—27 1)

where = @ D@ 2)..(2r 2 1)

which is the number of subspaces of dimension r in a
r

k-dimensional space.

Note that simply because two codes have identical Hamming weight enumerators does
not imply that the codes have identical W7 (C;y) weight enumerators for all r. We shall
drop the y from the notation whenever no confusion will arise.

There exists MacWilliams type identities for the higher weights, see [5], [11]. The
MacWilliams relations are given in [11], namely

s

) SIS ) = N 0 1) Zwr )

where the code has dimension k in Fy, and [s], = H;.;O(qs — ¢’). Note that to find W*(C+)
it is necessary to use W7(C,y) for all r, with 0 < r < s. We shall discuss MacWilliams
relations in Section 5.

Example 1: Let C be the (8,4, 4] Hamming code. Then we have

woe) = 1 WYHO) =14yt + 48
W2C) = 285+ 7 W3C) =8+ WHC) ="

Note that W(C;1) = [ 11 ] =15, W3(C;1) [ ;l ] =35, and W?3(C;1) = [ g ] = 15.

2 Binary Self-Dual Codes

We notice that for the binary case any two-dimensional subspace generated by v and w
consists of {v,w,0,v + w}. This simple fact will be used in proving the next few theorems.
We also note the following

(7) Supp({v,w)) = [v| + |w| = |v Aw],
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where |v A w| = |Supp(v) N Supp(w)|. In addition, |v+ w| = |v| + |w| — 2|v A w|.

Theorem 2.1 Let C be a self-orthogonal code with W?*(Ciy) = >. A%y'. If i is odd then
A; = 0.

Proof. Let a two-dimensional subspace be generated by v and w. Since C'is self-orthogonal
we have that |v]| and |w| are 0 (mod 2), and [v, w] = 0 implying that |[vAw|is 0 (mod 2).
Hence Supp((v,w)) = |v| + |w| — |v A w] is even. O

This is not true when r > 2, see Example 1.

Theorem 2.2 Let C be a self-orthogonal code. If dy = 0 (mod 4) then dy > %dl and if
di =2 (mod 4) then dy > 3d,.

Proof. We shall split the proof into two cases.
Case 1: [v Aw| < 3d;

Then we have ] 3
|U|+ |w| - |v/\w| >di +di — §d1 > §d1-

Case 2: [v Aw| > 3d;

Assume for some v, w we have [Supp((v,w))| < 3d;. Then since v + w is a vector in C
we have
(8) o]+ [w] = 2lv Aw| = dy,

and since the support is less than [Supp((v, w))| < 2d;, then
3
9) [v| + Jw| — [v Aw| < édl.
Inequality (8) gives |v| + |w| > d; + 2|v A w|, and placing into (9) gives
3
di +lvAw| <dy+2lvAw|— v Aw| < o]+ |w| — v Aw| < §d1’

so that di + [v A w| < 2d; and finally |v A w| < 1d;. This contradicts our assumption that

|U VAN U}| > %dl
If dy =2 (mod 4) then 2d; =1 (mod 2) and then by Theorem 2.1 the coefficient of
Y3 s 0. O

Proposition 2.3 Let C be a code, if Ag, > 1, where Ay, is the number of minimum weight
vectors, then dy < 2dy. If Ag, = 1 then dy < dy +d)| where d} is the second smallest non-zero
Hamming weight in C.



Proof. If there are at least two vectors with minimum weight in C, then the two-
dimensional subcode generated by these two vectors has support less than or equal to 2d;.
The second statement follows similarly by taking the unique minimum weight vector with a
vector of the second smallest weight. a

Tables 3 and 4 give dy and ds for all binary self-dual codes with n < 12, and all optimal
self-dual codes with n < 32. Note that the code egis has di = 2 and dy = 6 which is
higher than the bound dy < 2d; guarantees, so a self-dual code exists which exceeds the
bound. Constructions for these binary self-dual codes can be found in [[8], Chapter 4] and
the references therein.

3 Shadows

We shall apply higher weights to the shadow codes. Let C' be a Type I self-dual code,
with Cy the subcode of doubly-even vectors, and set Cy = C' — Cj. Define the shadow to
be S := Cy — C, and denote by C; and Cs the cosets of Cy that comprise S. Hence,
Clt = CoUCUCyUCs with C = CyUCy and S = C; UCs. See [1] for a complete
description.

Define X7 (C’ y) as follows

(10) X (Chy) =W (Cqsy) — W (Cs ).

Notice that X7 (C;y) counts subcodes of dimension r of Cyj that are not subcodes of C. As
such this polynomial must have coefficients that are non-negative integers.

Recall that S = C + s where s is some vector in Ci not in C. Then Y7 (C;y) counts the
number of subcodes of the form

(11) (v1 + 18,05 + Qas, ..., Uk + Q4S),

where v; € C, a; € Fy and at least one «; is not 0.

For a code C to exist W7 (C';y) and ¥7(C'; y) must have non-negative integral coefficients
for all r with 0 <7 < . In particular, note that if C' is a self-dual code with shadow S, then
¥1(C;y) = Hs(y). Hence, the weight enumerator X7 (C';y) is a generalization of the weight
enumerator of the shadow.

Example 2: Consider the self-dual code 73. (See [2] or [8] and the references therein
for any undefined notation.) This code has W?2(C;y) = 3y* + 4y%, W?2(Co;y) = v°, and
W2(Cqsy) = 15yt + 12y° + 85, so X2(Csy) = 12y* + 12y° + 4y5.



3.1 Cosets

In general, let £ be a coset of C'in (', i.e., E = C +t for some vector t. Then we can define
(12) W'(E,Csy) =Y Ajy,

where Al is the number of subcodes D of the form

(13) D= (vi+ait,vo+as+t,..., 05+ ap+1t),

with D C F, dim(D) = r, and ||D|| = i, where at least one «o; # 0, £ = (C' + t) and the v;
are in C. Namely it counts the higher weights of the subcodes of C’ that are contained in E

but not contained in C'. Hence
X(Chy) = WT(S,Cry) and W'(Ciy) = W (Cosy) + W(Ca, Co3 ).
Theorem 3.1 Let C' be an [n, k,d| code with E a coset of C, then

k+1 _ ok—r+1
(14) W B, 1) = 2 [ g ] .

2k77"+1 —-1 r

|

[T @R+ —2) T3 (2F—29)
Mo -2) -

Proof. We have that

E+1
r

W (E,C,1) =

The numerator becomes
(2 — 1) T (251 — 27) — TSy (28 — 27
- (25— [Tz 2028 — 27 — (2 - 2 ) T2 - 2)
_ (2k+1 . 1)2r—1 HZT:—OQ(Zk . 21) . (2k . 27'—1) H::_(?(Qk . 21)
= (@ -2t - 2F 2 ) TITAE - 20 = (26 — 29 T2 - 2).

Then the quotient becomes

22 -DILL @ -2) _ 2@ -1 [ : ] A [ : ]

15 =
i T e R A S

Note that for r = 1 this becomes
9k [k] A N

r

2k — 1

as expected.



4 Biweight Enumerators and Higher Weights

The MacWilliams relations (6) do not allow for a straightforward application of invariant
theory, since W"(C*;y) is not obtained by a group action on W7(C;y), but rather in-
volves WO(Csy), WHCsy), ..., W (C;y). We shall use the biweight enumerator to produce
a Gleason type theorem for the second higher weight. We begin with some definitions.

If A and B are binary codes, of length n, with v € A and w € B define

i(v,w) = the number of r with v, = 0 and w, = 0,
jv,w) = the number of r with v, = 0 and w, = 1,
k(v,w) = the number of r with v, = 1 and w, =0,
l(v,w) = the number of r with v, = 1 and w, = 1.

The joint weight enumerator of the codes A and B is given by

JABCLde ZZ i(v,w) vw) k(vw)dl(vw)

vEA wEB

If A = B then the weight enumerator J4 4 is called the biweight enumerator of A.

Theorem 4.1 Let C' be a binary code then

WQ(Cay) = %(JC',C<17yayay)_JC,C'(LOaan)

16
( ) _JC,C(laO:ya 0) _JC,C(layaoa 0)+2)

Proof. Let v,w be any two linearly independent vectors then

|Supp < v,w > | = j(v,w) + k(v,w) + (v, w).

The biweight enumerator counts all pairs v, w, including {v,v}, {0,v} and {v,0}, none of
which generate a two-dimensional subcode. We have that Jo(1,0,0,y) counts pairs of the
form {v,v}, Joc(1,0,y,0) counts pairs of the form {v,0}, and Jo(1,y,0,0) counts pairs
of the form {0,v}. The 2 at the end of the sum accounts for the number of times {0, 0} is

counted.
Each space {0,v,w,v + w} is counted P(3,2) = 6 times in the biweight enumerator,
accounting for the ¢. O
Note that

é(JC’C(l, 1,1,1) — Joe(1,0,0,1) — Joo(1,0,1,0) — Joe(1,1,0,0) + 2) =

122 —3(2%) +2) = [ ;‘“ ] .
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This relationship is useful to produce Gleason type theorems for the second higher weight
enumerator. In Section 5 another relationship between the generalized joint weight enumer-
ator and the higher weights is introduced.

Example 3: The biweight enumerator of the (8,4, 4] extended Hamming code is

Joc(a,b,c,d) = d® + 14 ctd* + & + 14 d*%* + 14 Mot + b° +
168 2d?a?b® + 14 d*a* + 14 c*a* + 14 a*b* + ab.

It is a simple calculation to see that

%(vac(l, Y, Yy, y) - JC,C(L 07 O: y) - JC,C(L 07 Y, 0) - JC,C(Ly-/ 0: 0) + 2)
= Ty8 + 28y% = W2(C;y).

In [6] and [4] Gleason theorems for Type I and Type II codes were given. We state the
result in the next lemma, the result in Theorem 4.1 in [4], and the polynomials can be found
there.

Lemma 4.2 Let S be a self-dual linear code. If S is Type I its biweight enumerator is an
element of
(17) R, = C[A,C, B> D*|® BDC|A, C, B>, D?,

If S is Type II its biweight enumerator is an element of
(18) Ry = C[Py, Piy, Pau, Py| ® ProPaoCl Py, Pry, Pas, Pyo).

Theorem 4.3 Let C be a self-dual code. Then W?(C,y) is of the form

1
(19) gﬂL%%w+J@QQM+J@&%®+J@%Q®+%,

where J is an element of Ry if the code is Type I and J is an element of Ry if the code is
Type I1.

Using this theorem, it is easy to compute the possible W?2(C,y) where C' is a Type II
code of length 72 with minimum weight 16. In fact there is a unique weight enumerator,
given that J(1,0,0,y) must be the unique Hamming weight enumerator for such a code.
This weight enumerator is given in Table 1. There is also a unique W2(C,y) for a Type II
code of length 48 with minimum weight 12, and this is given in Table 2. Note that dy = %dl
for these codes.

The results in Table 3 were generated from the codes of the binary self-dual codes via a
C program which enumerates all subcodes. The accuracy of the program was confirmed by
hand solutions and the method given in Section 5.



Table 1: The Second Higher Weight Enumerator for a Type II [72, 36, 16] Code

coefficient of y? weight ¢
96191865 24
4309395552 26
119312891460 28
2379079500864 30
37327599503964 32
466987648992480 34
4687779244903412 36
37810235197002240 38
244777798274765679 40
1269000323938260672 42
5251816390965277320 44
17262594429823645056 46
44763003632389491540 48
90768836016453484224 50
142313871132195291144 52
170060449665123790080 54
152060783100409784007 56
99349931253373567200 58
45970401654169517364 60
14440224673488398400 62
2900924791551272475 64
340809968304405600 66
20197782231604740 68
451381581930240 70
1617151596337 72

5 Joint Weight Enumerators and the MacWilliams Re-

lations

We generalize the joint weight enumerator:

Jg,(q;a, a € Fg) = Z H xzaa(’l)l,...,’l)g)’

v1,...,0g€C aE]Fg

where n, (v, ..., v,) denotes the number of ¢ such that a = (vy,,...,v,,).

We shall now produce a fundamental relationship between the joint weight enumerator
and the higher weight enumerator.

For r < g, put

We(C) = t{(v1,...,vy) € C9 - dim(vy, ..., v5) =71, ng(v1,...,0,) = eq, Va € F3},

where e = (e, : a € F}). Fixing ey, we have

Z’Q{E(C) = ﬂ{(?)l, .. .,Ug) e (9 dim(vl, .. -,Ug> =T I|<U17' . 7Ug>|| =n —60}
= flg:1)A, ¢, (C),



Table 2: The Second Higher Weight Enumerator for a Type II [48,24,12] Code

coefficient of y? weight 4
2663584 18
64211400 20
1030807008 22
10803665340 24
82241961120 26
453764840760 28
1782244008160 30
4947166777905 32
9527550547680 34
12381654787320 36
10464210515616 38
5432928694380 40
1589848008672 42
227081475720 44
11795491488 46
99273682 48

where >’ denotes the summation over e, such that

Z =n—ey 0<e, <n—eVa, a##0).
ea(a£0)

f(g,r) is the number of ordered g-elements which span the r-dimensional subspace of the
fixed r-dimensional subspace in a g-dimensional space, that is

flg.r) =8{(v1,...,v,) € DY : dim(vy, ..., v,) =1},

where D is a fixed r-dimensional subspace in Fj. Note that f(g,r) is independent of the
choice of the r-dimensional subspace D. Put

[g]r:{l if =0,

(29 —1)(29 —2)--- (29 —271)  otherwise.

The number [g], is known as the number of ordered linear independent r-elements in the
g-dimensional Fy-space. We observe that f(g,7) = [g]. by induction on g and r, that is

(i) we prove f(g,0) = [g]o, for all g with 0 < g <k,
(ii) assuming f(g—1,r) =[g—1], and f(g—1,7—1) = [g— 1],_1, we prove f(g,7) = [g]:-

(i) is obvious. Before proving (ii), we claim the following recurrence

f(gvr) = 2rf(g - 17T) + (21” - 1)2T71f(g - 17T - 1))
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for r < g. Indeed, for a fixed r-dimensional subspace D, we have

f(gar) = ﬂ{(Ul,...,’l}g)EDg|dim<U1,...,U9>:T}
= t{(v1,...,95) € DI dim(vy,...,v,) = r,dim(vy,...,v4-1) =1}
+i{(v1,...,vy) € DY dim(vy, ..., v,) = r,dim(vy, ..., v5—1) =7 — 1}

EonEon@-)
(2r—1_1)(2r—2_1),_.(2_1)'(2 =2"7) - flg—-1,r—1)

= 2flg-1,7r)+ 2 -1)27 f(g—1,r—1).

- 2r-f(g—1,7")+

Then we can prove the latter part of the induction, that is

flg;r) = 27 flg—1L7r)+ (2" =1)2" " flg—1,r = 1)
= 2g—1],+ @2 -2 g -1,
_ 27«(2971 —1)--- (2971 _ 2%2)(2971 _ 21"71)
+(2" — 1)2r—1(29—1 —1)--- (29—1 _ 27»—3)(29—1 _ 2r—2)

= (29-2)---(29 =27 1)(29 —2") + (20 —1)(29 — 2) -+ (29 — 2" %)(29 — 2" D)
= (27-2)--(2-2{(Z-2)+ 2" -1)}

— (29—2)--(29-2)-(29-1)

= (gl

Thus the induction is complete.
Therefore we have

S A (C) = [l AL (O).

Finally we give a relation between JZ and W/.’s.

Theorem 5.1 For C' a code over Fy, we get

g

Je(zo = 2o =yla#0) =Y gl We(z,y).

Proof. We have

kS

ng(xa,a € ]Fg) = Z H IZa(vl ..... vg)
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Putting zy = z, z, =y (a # 0), we have

(o=, x,=y(a#0)) = Xg: zn: (Z/%(C)y"’“) z®

r=0 ep=0
g n
= ) gl AL (O ea
r=0 ep=0

Then we put ey — n —i (0 <i < n) and we have

g n
Jo(wo =, wa=yla#£0)) = D3 [ghA(C)x" 'y
r=0 =0
g
= > (g Wlz,y).
r=0
This completes the proof of Theorem 5.1. a

Example 4: We give examples for the binary case. In the following list, we omit C, x, y.
WY is always 2", where n denotes the length of the code C.

JU= Wl w,

J2 = WO 3w 6w,

JP = WO+ TW 4+ 42W2 + 168W3,

Jt = WU+ 15W! 4+ 210W2 + 252003 + 201604

The joint weight enumerator JZ(z,) has the MacWilliams identity (see [8]), that is

1 a
Jgu_(xa) - wc]g« Z(—l)[ ’b]Ib
velFs

This leads to the MacWilliams identity for W (see Theorem 1 in [5]):

Corollary 5.2 (MacWilliams Relations) Let C be a code over Fy. Then we get

g g

> Mol W (9) = 1 D lal Welo + (22 = 1y =),

r=0 r=0
Corollary 5.3 Let C, D be codes over Fy. Then we get

g

S0 Weap@y) = > [gllge W (Ci 2, y) W (2.y).

r=0 0<r, r'<g

Proof. This follows from the identity JZ., = J&J,. O

12



5.1 A Gleason-type Theorem

In this subsection, we shall use the previous results to produce a Gleason-type theorem for
binary self-dual codes.

Let C be a self-dual Type I code and W' (C; x, y) its symmetric higher weight enumerator.
Consider the polynomial J'(z,y), the genus ¢ joint weight enumerator. The polynomial
J'(z,y) is held invariant by the action of the MacWilliams relations given by the matrix

1 (1 20-1
M= —— .
! ﬁ(l —1>

It is also held invariant by the matrix

ot o)
0 -1

because the length of the code must be even.
These two matrices generate the following group: Gy = {I, M;, —M;, —I}. For all ¢ the
Molien series is given by

1

2 4 6
T s LR N

It is easy to find the invariants, giving the following theorem.

Theorem 5.4 Let C be a Type I binary code, then

(20) JHz,y) =) [thW(C;z,y) € Cla® + (2" = 1)y”.2” + (2" = Day).

r<t

Note that the only assumption is that the code is formally self-dual with respect to the
genus t weight enumerator and that the length of the code is even. Thus any code equivalent
to its dual has a weight enumerator of the form given in the previous theorem.

If the code is Type II then the length must be a multiple of 8 and we have that J* is
also held invariant by the matrix wl, where w® = 1.

Let Gyrtp = (Gy,wl). Then Gpry has order 16 and the Molien series is simply a subseries
of the Molien series given above where the only terms with non-zero coefficients are those
with exponents congruent to 0 (mod 8). Moreover, the weight enumerator of a Type II
code is an element of the ring given in Theorem 5.4 with the restriction that the length of
the code is 0 (mod 8).

Using the Gleason theorem given above together with the equation in Theorem 5.1, it
is a simple calculation to determine all of the higher weight enumerators for the [24, 12, §]
Type II Golay code, which are given in Tables 5, 6 and 7. It is then easy to compute the
genus 12 weight enumerator, and this is given in Table 8.

13



6 Graded Rings

We consider the graded ring
WY = CW"(Csz,y): 0<r<g],
with C' a Type II code, and denote the vector space of 209 of degree ¢ by Qﬂég)
W = Dr>0,6=0 (mod S)Qnég)-

We put

Iy = Weo8 = 28,

L = WL ="y + ¢,

I, = W, =17592"" + 25762"%y"* 4 7592%y'0 + y*,

where eg and go4 denote the [8,4,4] extended Hamming code and the [24,12,8] extended
Golay code, respectively.

6.1 The graded ring for ¢ =0 and 1

Theorem 6.1 (i) W = C[/,].
(i) 1y and I are algebraically independent and 5 = Clly, I1] & Clly, I1] 5.

Proof. (i) is obvious and we prove (ii). First we show that I, and I; are algebraically
independent. Otherwise we have

(21) > oyl =0,
8i+8j—¢

for some a;;’s and some positive integer ¢. Dividing both sides by some appropriate power of
Iy, we can assume that ag /s # 0. Considering the coefficient of y*, we have aq ¢ /8 = 0, which
contradicts the assumption aq /s # 0. Therefore Iy and I; are algebraically independent.

For any Type II code C, there exists some polynomial P(X,Y") such that

Jo =P, JL ).

eg’ g4

By Theorem 5.1, we have

Jo = P(ly+ L, 15+ 1))

- P(]07[1712)7
for some polynomial P (X,Y, 7). Again using Theorem 5.1, we have
We = P(ly, I, I,) = W € Cly. I, I,

14



therefore we have
2171 — C[[g, 11, ]2}

Because of the relation

I3 = —11527312513 17 — 295525621517 — 834555151} — 1518117 — 1Y
+(2976750015 + TI188TSIZ T, + 32821017 + 21I7) I,

we have
Qﬁl - C[[O, 11] + C[Io, ]1]]2.
We assume
(22) > ayliH+ < > @ﬂé]{) L =0.
8i+8j=¢ 8i+8j=0—24

Dividing both sides by some power of Iy, we may assume that at least one of a5 and
Bo,(¢~24)/8 is not zero, but this is impossible because the coefficient of y’ must satisfy

ag,e/8 + Bo,(e—24)8 = 0.

Therefore we have
w0 = C[ly, 1] ® Clly, I] I,

which completes the proof of (ii). O

Corollary 6.2 We obtain

; 0,0 _ 1
Z dim20,"t" = T
>0

. W, L+
Z dlm QUE t = m
>0

We shall recall some definitions. Let R be a graded C-algebra of dimension n, where n
is the maximal number of elements of R which are algebraically independent over C. A set
{6y,...,0,} of homogeneous elements of positive degree in R is said to be a homogeneous
system of parameters if R is finitely generated as a module over Clfy,...,0,]. If R is a
finitely generated free module over Cl#,,...,#6,], then R is said to be Cohen-Macaulay. We
are now able to state the next corollary.

Corollary 6.3 The graded rings 209 for g =0, 1 are Cohen-Macaulay.
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Remark. The decomposition given in the above theorem is not unique. In fact, we have

w0 = CliF e,

. 0,0 1+1¢8
Zdlmﬁﬁz t = m,
>0
wl = Clh.Ll(leLhelelellel),
1 t8 tlﬁ t24 t32 t40
Zdimﬁﬁ;l)tlz _ +1+7+ T+ +

(1—5)(1 — 29

>0

The details are omitted.

6.2 The graded ring for g =2

The homogeneous polynomials Iy, I, and I5 are the same as the previous section. Moreover
we put

Iy =W2 = 282°y° + 7y°,
Iy =W, = 354202"%y" + 1700162"y"* + 6489452°y"0 +
1020096259 + 7438202%y* + 1700162%y%* + 5842y**,

and I5 = Wd+ g =W? it I; = W;IO, where d denotes the code of length n whose generator

matrix is given by

]
jaw]
—
—
—
—
)

0ooo0oo0oo0o00...1111
1010101 ...010°1

o O

Lemma 6.4 (i) For ¢ =8, 16, the homogeneous polynomials
LIIF (0<i,j.k <€/8,8 +8j+ 8k =1),

are linearly independent over C.
(ii) For £ > 24, the homogeneous polynomials

LOIF (0<i,j<(/8,0<k<3, 8i+8j+8k=1),
[ézfm)/s I, [(54724) /8 I,

are linearly independent over C.

16



Proof. We can show the case ¢ = 8, 16 by direct computation. We assume ¢ > 24 and put

S augRleHIE + 8L TV L + 1 TR = 0.
0<1i,j<€/8,0<k<3
8i+8j+8k=F

First Step: for ¢ > 24, we have
Qg/8,0,0 = Qi/g—1,1,0 = Q/g—1,01 = Q/g—21,1 = 0.

Second Step: for ¢ > 32, we have

Qi p/8—i0 = Qip/s—i—1,1 = Qi g/s—i—22 = Qig/s—i—3,3 =0 forall i (0 <@ < < —4).

o]

Third Step: for ¢ > 24, we have

Qp/8—2,2,0 = Qlg/g—2,0,2 = Qg/8—33,0 = Qp/8—321 = Qg/g—31,2 = 0¢/8-3,0,3 = B=v=0.

Proof of the First Step: looking at the coefficients of the monomials ¢, at~*y*, 2/=6y5, =104,

we have
ayg0,0 = 1dayg_1,1,0 = 28ay/8-101 = 14 - 28a/8-21,1 = 0.

Proof of the Second Step: by induction on i. For i = 0, looking at the coefficients of

the monomials y*, z?y*2, 'y, 2%y*~%, the matrix of the coefficients of ag /s, o ¢/s—1,1,

Q,0/8—2,2, Q0,¢/8—3,3 18 given by

1 7 72 73 @0,0/8,0 0

0 28 2.28.7 3.28-72 @i0/8—1,1 | o
(¢/8)-14  (¢/8—1)-14-7 (£/8—2)-14-72 + 282 (¢/8 -3)-14-7343.282.7 agess—22 | | O |’

0 (¢/8—1)-14-28 (£/8—2)-14-2-28-7 (/8 —3)-14-3.28.72 4 283 @ie/5—3,3 0

The determinant of this matrix is 481890304 and this matrix has an inverse. Therefore we
have

Qoe/8,0 = Qoe/8—1,1 = Qor/8—22 = Q¢/8—-3,3 = 0.

We assume the validity for less than i. Looking at the coefficients of the monomials

x&yg*g’, $81+2y6781727 1,81+4y4781747 1,81+6yf*81*67 we have
1 7 72 73 Q5 0/8—i,0 0
0 28 2.28-7 3.28 .72 @i e/8—i—1,1 | _| O
(/8—i)-14  (¢/8—i—1)-14-7 (¢/8—i—2)-14-72 4282 (¢/8-i—3)-14-7°+3-28%.7 ae/s—imz2 | | O
0 (¢/8=i=1)-14.28 (£/8=i=2)-14-2-28-7 (£/8—i—3)-14.3.28.72 + 283 i/8—i—3,3 0

whose determinant is also 481890304. So we have

QG p/8—i,0 = Qp/8—i—11 = Q4 p/8—i—22 = Q4 ¢/8—i—3.3 = 0.

This completes the induction.
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Proof of the Third Step: looking at the coefficients of the monomials z‘~8y®, zt12y'2,

$Z 14y14’ wﬁ 16y16’ xl 18y18’ xé 20y207 ZCZ 22y227 $Z 24y24’ we have
142 0 0 0 0 0 759 0 Qp/8—2,2,0 0
2-14 282 143 0 0 0 2576 35420 Qp/8-2,0,2 0
0 2.28.7 0 142 . 28 0 0 0 170016 0 /8-3,3.0 0
1 72 3.142 142 .7 14 - 282 0 759 648945 cgss—s21 | _| O
0 0 0 282 14-2-28-7 283 0 1020096 aprs_312 | | O
0 0 3-14 2-14-7 14.72 4282 3.282.7 0 743820 op/s 3,03 0
0 0 0 28 2.28.7 3.28.72 0 170016 w 0
0 0 1 7 72 73 1 5842 ~ 0

whose determinant is 3021555835146208951664640, which implies

Qpr8—2,20 = Qg/g—2,0,2 = Qg/8—33,0 = Qp/g—321 = Qp/g—31,2 = 0g/8-3,0,3 = B=v=0.

This completes the proof of Lemma 6.4. O
We put
D o<ijk<ess (C]é]{l?’f (= 07 8; 167
Vo) 8i+8j+8k=(
@ogi,jgé/s,ogkgg@[é]{]éc) D C]éé—24)/812 &) Cfé€_24)/8[4 @ Z 24, f = O(mod 8),
8i+8j+8k=F

and put V = @50V ({).
Lemma 6.5 [5, 11[2, 11[4, ]3[2, [3[4, 167 [7, 122 12]4, [42 eV.

Proof. By direct computation using Magma. The explicit relations can be found at [7]. O

Theorem 6.6 We get w0 = v.
Proof. By a Theorem of Duke [3], for any Type II code C, we have

Je = Pi(Jeg Ty g dge ) + Pa( e g g

+
g24 dyy’ 79247

2\ 72

Tai) i,

for some polynomials P (X, Y, Z, W), Py(X,Y,Z, W). By Theorems 1 and 5, we have
Wé € Clly, I1, Iz, I, 1y, I5, I, I7],

or
Qﬂ(2> = (C[]Oa Il7 I2a 137 147 ]57 IG? ]7]

By the explicit relations given in Lemma 6.5, we have

w@) = (C[IO: ]17 ]27 ]37 ]4]
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In order to prove Theorem 6.6, it is enough to show that the elements IjI7 31515 are the
elements of V', where x denotes any non-negative integer. By the explicit relations given in
Lemma 6.5, we know that I5I7 15151} can be written as the sum of the elements

VAV 0 I b B M S b9 i D R
Again from Lemma 6.5 we know that [jI{1315, [§1{151, can be written as the sum of the
elements

LI 15T, I L.
Again from Lemma 6.5 we know that 51715, 151714 can be written as the sum of the elements
LI I, I,
The elements [;I;I5 are contained in V' because of the equality
Clly, I, L) =Cllp, h)(l® Lo I & I3).

Therefore we have shown that any elements of the form [jI; 5151} are contained in V', and
this completes the proof of Theorem 6.6. O

Corollary 6.7 We get

1 (=0,
dim WY ={ 3¢/8 (=38, 16,
02 0> 24.

Corollary 6.8 The graded ring 0% is not Cohen-Macaulay.

Proof.  Assume that 20? is Cohen-Macaulay. From Theorem 6.6, 25® is a finitely
generated C[Iy, [;]-module, for example, take 1, I3, [2, I3, I, I as a set of generators. This
implies that a set {Iy, [} is a homogeneous system of parameters (See [10]). Theorem 2.3.1
in [10] says that the ring 20 must be a finitely generated free C[Iy, I;]-module. Then the
dimension formula of 20 must be in the form

f(t)
=) f(t) € Zxolt],
but this is impossible since Theorem 6.6 (and Corollary 6.7) gives the equality
f(t) B 1 +t8 +t16 +t24 N t24 N t24
(1—18)2 (1 —t8)2 11—t 1 —1¢8

that is
ft) =14+ + 10 4 32 — 2432,

This completes the proof of Corollary 6.8.

Acknowledgment. The third author wishes to thank Professor K. Yokoyama for interesting
discussions on the paper.
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Table 3: Binary Self-Dual Codes with n < 26

n Code dr di dy ds
2 s 2

4 i2 2 4

6 i3 2 4 6
8 is 2 4 6
8 es 4 6 7
10 i 2 4 6
10 egia 2 6 7
12 i 2 4 6
12 i2eg 2 4 7
12 df, 4 6 8
14 est 4 6 7
16 dzt 4 6 8
16 dfs 4 6 8
16 e2 4 6 7
18 dat 4 6 9
18 (dierfi)* 4 6 7
20 ddy 4 6 8
20 (dipeg)t 4 6 7
20 (diodg)t 4 6 8
20 (d2d4) 4 6 8
20  (e2dg)t 4 6 7
20 (dify)t 4 6 9
20 dot 4 6 10
22 g2 6 10 12
24 Gos 8 12 14
24 h3, 10 12
26 fZ 6 10 12

21



Table 4: Binary Self-Dual Codes with 28 < n < 32

n Code dr di do dj
28 A28 6 10 13
28 B28 6 10 12
28 C28 6 10 12
30 A30 6 10 12
30 B30 6 10 12
30 C30 6 10 13
30 D30 6 10 12
30 E30 6 10 12
30 F30 6 10 12
30 G30 6 10 12
30 H30 6 10 13
30 130 6 10 12
30 J30 6 10 12
30 K30 6 10 12
32 081 (g32) 8§ 12 14
32 C82 (rs) 8 12 14
32 C83 (¢2) 8 12 14
32 C84 (fF) 8 12 14
32 085 (fy%) 8§ 12 14
32 g -1 8 12 14
32 ST 8 12 14
32 rep—I1 8 12 14

Table 5: Higher Weight Enumerators for the [24, 12, 8] Golay Code

wl w? w3 w4 weight 4
759 8
2576 35420 12
170016 91080 14
566720 12144 15
759 | 648945 | 1939245 648945 16
6800640 5100480 17
1020096 | 19126800 32728080 18
41483904 | 160665120 19
743820 | 73744440 | 613842768 20
97475840 | 1766466240 21
170016 | 93721320 | 3627594960 22
56785344 | 4739378160 23
1 5842 | 16610462 | 2964543186 24
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Table 6: Higher Weight Enumerators for the [24,12,8] Golay Code

wo wo w7 w8 weight ¢
759 16
340032 17
6078072 134596 18
69706560 4590432 42504 19
580710900 89736570 2497110 10626 20
3545513664 1187440320 77498960 991760 21
15228970680 10684676772 1504064760 45054240 22
41367370176 | 59857703136 | 17539208808 | 1129817040 23
53630338872 | 158850111409 | 95305717573 | 12735106417 24

Table 7: Higher Weight Enumerators for the [24,12,8] Golay Code

w?o wio W | W12 weight i
2024 21
276276 276 22
16194024 48576 24 23
391873471 | 2745303 | 4071 1 24

Table 8: The Genus 12 Weight Enumerator for a the [24, 12, 8] Golay Code

coefficient of y* weight i
1 0
3108105 8
593824369320 12
6251128987783680 14
3444606611761835520 15
1050587410792264700355 16
390501288700263630489600 17
632848422999677544321742080 18
818341578256851211988997411840 19
837777240517422043317084461495640 20
653466247556108310233433567871027200 21
364901493237608612477185876631883214080 22
129936662157218014626595565640177642647040 23
22170442980575323746852678066521975856155955 24
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